Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.037
1.
Front Microbiol ; 15: 1379625, 2024.
Article En | MEDLINE | ID: mdl-38690370

Urinary tract infections (UTIs) represent a significant challenge in clinical practice, with recurrent forms (rUTIs) posing a continual threat to patient health. Escherichia coli (E. coli) is the primary culprit in a vast majority of UTIs, both community-acquired and hospital-acquired, underscoring its clinical importance. Among different mediators of pathogenesis, toxin-antitoxin (TA) systems are emerging as the most prominent. The type II TA system, prevalent in prokaryotes, emerges as a critical player in stress response, biofilm formation, and cell dormancy. ccdAB, the first identified type II TA module, is renowned for maintaining plasmid stability. This paper aims to unravel the physiological role of the ccdAB in rUTIs caused by E. coli, delving into bacterial characteristics crucial for understanding and managing this disease. We investigated UPEC-induced rUTIs, examining changes in type II TA distribution and number, phylogenetic distribution, and Multi-Locus Sequence Typing (MLST) using polymerase chain reaction (PCR). Furthermore, our findings revealed that the induction of ccdB expression in E. coli BL21 (DE3) inhibited bacterial growth, observed that the expression of both ccdAB and ccdB in E. coli BL21 (DE3) led to an increase in biofilm formation, and confirmed that ccdAB plays a role in the development of persistent bacteria in urinary tract infections. Our findings could pave the way for novel therapeutic approaches targeting these systems, potentially reducing the prevalence of rUTIs. Through this investigation, we hope to contribute significantly to the global effort to combat the persistent challenge of rUTIs.

2.
J Nat Prod ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38690764

With the advancement of bioinformatics, the integration of genome mining with efficient separation technology enables the discovery of a greater number of novel bioactive compounds. The deletion of the key gene responsible for triterpene cyclase biosynthesis in the polar strain Eutypella sp. D-1 instigated metabolic shunting, resulting in the activation of dormant genes and the subsequent production of detectable, new compounds. Fifteen sesquiterpenes were isolated from the mutant strain, with eight being new compounds. The structural elucidation of these compounds was obtained through a combination of HRESIMS, NMR spectroscopy, and ECD calculations, revealing six distinct skeleton types. Compound 7 possessed a unique skeleton of 5/10 macrocyclic ether structure. Based on the gene functions and newly acquired secondary metabolites, the metabolic shunting pathway in the mutant strain was inferred. Compounds 6, 8, 11, 14, and 15 exhibited anti-inflammatory effects without cytotoxicity through the release of nitric oxide from lipopolysaccharide-stimulated RAW264.7 cells. Notably, acorane-type sesquiterpene 8 inhibited nitric oxide production and modulated the MAPK and NLRP3/caspase-1 signaling pathways. Compound 8 also alleviated the CuSO4-induced systemic neurological inflammation symptoms in a transgenic fluorescent zebrafish model.

3.
J Hazard Mater ; 472: 134571, 2024 May 11.
Article En | MEDLINE | ID: mdl-38743976

Research on riverine microplastics has gradually increased, highlighting an area for further exploration: the lack of extensive, large-scale regional variations analysis due to methodological and spatiotemporal limitations. Herein, we constructed and applied a comprehensive framework for synthesizing and analyzing literature data on riverine microplastics to enable comparative research on the regional variations on a large scale. Research results showed that in 76 rivers primarily located in Asia, Europe, and North America, the microplastic abundance of surface water in Asian rivers was three times higher than that in Euro-America rivers, while sediment in Euro-American rivers was five times more microplastics than Asia rivers, indicating significant regional variations (p < 0.001). Additionally, based on the income levels of countries, rivers in lower-middle and upper-middle income countries had significantly (p < 0.001) higher abundance of microplastics in surface water compared to high-income countries, while the opposite was true for sediment. This phenomenon was preliminarily attributed to varying levels of urbanization across countries. Our proposed framework for synthesizing and analyzing microplastic literature data provides a holistic understanding of microplastic disparities in the environment, and can facilitate broader discussions on management and mitigation strategies.

4.
J Cell Mol Med ; 28(9): e18369, 2024 May.
Article En | MEDLINE | ID: mdl-38712978

Acute myeloid leukaemia (AML) is a fatal and refractory haematologic cancer that primarily affects adults. It interferes with bone marrow cell proliferation. Patients have a 5 years survival rate of less than 30% despite the availability of several treatments, including chemotherapy, allogeneic haematopoietic stem cell transplantation (Allo-HSCT), and receptor antagonist drugs. Allo-HSCT is the mainstay of acute myeloid leukaemia treatment. Although it does work, there are severe side effects, such as graft-versus-host disease (GVHD). In recent years, chimeric antigen receptor (CAR)-T cell therapies have made significant progress in the treatment of cancer. These engineered T cells can locate and recognize tumour cells in vivo and release a large number of effectors through immune action to effectively kill tumour cells. CAR-T cells are among the most effective cancer treatments because of this property. CAR-T cells have demonstrated positive therapeutic results in the treatment of acute myeloid leukaemia, according to numerous clinical investigations. This review highlights recent progress in new targets for AML immunotherapy, and the limitations, and difficulties of CAR-T therapy for AML.


Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals
5.
Environ Int ; 187: 108680, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38723455

The global health crisis posed by increasing antimicrobial resistance (AMR) implicitly requires solutions based a One Health approach, yet multisectoral, multidisciplinary research on AMR is rare and huge knowledge gaps exist to guide integrated action. This is partly because a comprehensive survey of past research activity has never performed due to the massive scale and diversity of published information. Here we compiled 254,738 articles on AMR using Artificial Intelligence (AI; i.e., Natural Language Processing, NLP) methods to create a database and information retrieval system for knowledge extraction on research perfomed over the last 20 years. Global maps were created that describe regional, methodological, and sectoral AMR research activities that confirm limited intersectoral research has been performed, which is key to guiding science-informed policy solutions to AMR, especially in low-income countries (LICs). Further, we show greater harmonisation in research methods across sectors and regions is urgently needed. For example, differences in analytical methods used among sectors in AMR research, such as employing culture-based versus genomic methods, results in poor communication between sectors and partially explains why One Health-based solutions are not ensuing. Therefore, our analysis suggest that performing culture-based and genomic AMR analysis in tandem in all sectors is crucial for data integration and holistic One Health solutions. Finally, increased investment in capacity development in LICs should be prioritised as they are places where the AMR burden is often greatest. Our open-access database and AI methodology can be used to further develop, disseminate, and create new tools and practices for AMR knowledge and information sharing.

6.
Oncol Lett ; 27(6): 277, 2024 Jun.
Article En | MEDLINE | ID: mdl-38699660

Breast cancer (BRCA) is a leading cause of death in women worldwide, accounting for 31% of female cancer. Autophagy plays a crucial role in cancer progression, however, the function of autophagy-related gene neuroregulatory protein 2 (NRG2) in BRCA and its underlying molecular mechanisms remain unclear. In the present study, the expression of the NRG2 gene in BRCA was significantly down-regulated compared with the normal controls. The low expression level of NRG2 was related to poor survival rate of BRCA. The receiver operating characteristic curve of NRG2 showed a good diagnostic value for distinguishing BRCA from normal tissues (AUC=0.932). GO-KEGG analysis and GSEA enrichment analysis showed that NRG2 and its regulated genes were enriched in autophagy-related and immune-related pathways, and NRG2 was positively correlated with a number of immune cells and immune checkpoint genes. In addition, knockdown of NRG2 significantly promoted the proliferation, invasion and migration of BRCA cells. The autophagy marker, LC3-II and epithelial-mesenchymal transition (EMT) marker, vimentin were increased, while P62 and E-cadherin were decreased in response to NRG2 depletion. The findings of the present study demonstrated that NRG2 acts as a tumor suppressor factor that contributes to the immune escape and anti-tumor immunity inhibition by regulating the pathological process of autophagy and EMT, suggesting that NRG2 could be used as a prognostic biomarker and clinical target for BRCA therapy.

7.
Proc Natl Acad Sci U S A ; 121(21): e2318690121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38739791

Cyanobacteria are photosynthetic bacteria whose gene expression patterns are globally regulated by their circadian (daily) clocks. Due to their ability to use sunlight as their energy source, they are also attractive hosts for "green" production of pharmaceuticals, renewable fuels, and chemicals. However, despite the application of traditional genetic tools such as the identification of strong promoters to enhance the expression of heterologous genes, cyanobacteria have lagged behind other microorganisms such as Escherichia coli and yeast as economically efficient cell factories. The previous approaches have ignored large-scale constraints within cyanobacterial metabolic networks on transcription, predominantly the pervasive control of gene expression by the circadian (daily) clock. Here, we show that reprogramming gene expression by releasing circadian repressor elements in the transcriptional regulatory pathways coupled with inactivation of the central oscillating mechanism enables a dramatic enhancement of expression in cyanobacteria of heterologous genes encoding both catalytically active enzymes and polypeptides of biomedical significance.


Gene Expression Regulation, Bacterial , Photosynthesis , Photosynthesis/genetics , Circadian Clocks/genetics , Biotechnology/methods , Cyanobacteria/genetics , Cyanobacteria/metabolism , Promoter Regions, Genetic , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
8.
Bioorg Med Chem Lett ; 106: 129774, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38688438

Herein, we constructed a fluorescence biosensor for the ultra-sensitive analysis of microRNAs (miRNAs) by combining DNA hairpins transition triggered strand displacement amplification (DHT-SDA) with primer exchange reaction (PER). Target miRNA initiated DHT-SDA to facilitate the generation of multiple single-stranded DNA (ssDNA) as PER primer, which was extended into a long ssDNA. The biosensor is successfully utilized in detecting miRNAs with high sensitivity (limit of detection for miRNA-21 was 58 fM) and a good linear relationship between 100 nM and 100 fM. By simply changing the DNA hairpin sequence, the constructed biosensor can be extended to analyze another miRNAs. Moreover, the biosensor has the feasibility of detecting miRNAs in real samples with satisfactory accuracy and reliability. Therefore, the fluorescent biosensor has great application potential in clinical diagnosis.


Biosensing Techniques , MicroRNAs , Nucleic Acid Amplification Techniques , MicroRNAs/metabolism , MicroRNAs/analysis , Humans , DNA/chemistry , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Fluorescence , Inverted Repeat Sequences , Spectrometry, Fluorescence , Limit of Detection , DNA Primers/chemistry
9.
ACS Nano ; 18(15): 10439-10453, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38567994

The cGAS-STING pathway plays a crucial role in innate immune activation against cancer and infections, and STING agonists based on cyclic dinucleotides (CDN) have garnered attention for their potential use in cancer immunotherapy and vaccines. However, the limited drug-like properties of CDN necessitate an efficient delivery system to the immune system. To address these challenges, we developed an immunostimulatory delivery system for STING agonists. Here, we have examined aqueous coordination interactions between CDN and metal ions and report that CDN mixed with Zn2+ and Mn2+ formed distinctive crystal structures. Further pharmaceutical engineering led to the development of a functional coordination nanoparticle, termed the Zinc-Mn-CDN Particle (ZMCP), produced by a simple aqueous one-pot synthesis. Local or systemic administration of ZMCP exerted robust antitumor efficacy in mice. Importantly, recombinant protein antigens from SARS-CoV-2 can be simply loaded during the aqueous one-pot synthesis. The resulting ZMCP antigens elicited strong cellular and humoral immune responses that neutralized SARS-CoV-2, highlighting ZMCP as a self-adjuvant vaccine platform against COVID-19 and other infectious pathogens. Overall, this work establishes a paradigm for developing translational coordination nanomedicine based on drug-metal ion coordination and broadens the applicability of coordination medicine for the delivery of proteins and other biologics.


Nanoparticles , Neoplasms , Vaccines , Animals , Mice , Neoplasms/therapy , Adjuvants, Immunologic , Immunotherapy/methods , Nanoparticles/chemistry
10.
J Spinal Cord Med ; : 1-14, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38647358

BACKGROUND: Oxidative stress is a crucial factor contributing to the occurrence and development of secondary damage in spinal cord injuries (SCI), ultimately impacting the recovery process. α-lipoic acid (ALA) exhibits potent antioxidant properties, effectively reducing secondary damage and providing neuroprotective benefits. However, the precise mechanism by which ALA plays its antioxidant role remains unknown. METHODS: We established a model of moderate spinal cord contusion in rats. Experimental rats were randomly divided into 3 distinct groups: the sham group, the model control group (SCI_Veh), and the ALA treatment group (SCI_ALA). The sham group rats were exposed only to the SC without contusion injury. Rats belonging to SCI_Veh group were not administered any treatment after SCI. Rats of SCI_ALA group were intraperitoneally injected with the corresponding volume of ALA according to body weight for three consecutive days after the surgery. Subsequently, three days after SCI, spinal cord samples were obtained from three groups of rats: the sham group, model control group, and administration group. Thereafter, total RNA was extracted from the samples and the expression of three sets of differential genes was analyzed by transcriptome sequencing technology. Real-time PCR was used to verify the sequencing results. The impact of ALA on oxidative stress in rats following SCI was assessed by measuring their total antioxidant capacity and hydrogen peroxide (H2O2) content. The effects of ALA on rat recovery following SCI was investigated through Beattie and Bresnahan (BBB) score and footprint analysis. RESULTS: The findings from the transcriptome sequencing analysis revealed that the model control group had 2975 genes with altered expression levels when compared to the ALA treatment group. Among these genes, 1583 were found to be upregulated while 1392 were down-regulated. Gene ontology (GO) displayed significant enrichment in terms of functionality, specifically in oxidative phosphorylation, oxidoreductase activity, and signaling receptor activity. The Kyoto encyclopedia of genes and genomes (KEGG) pathway was enriched in oxidative phosphorylation, glutathione metabolism and cell cycle. ALA was found to have multiple benefits for rats after SCI, including increasing their antioxidant capacity and reducing H2O2 levels. Additionally, it was effective in improving motor function (such as 7 days after SCI, the BBB score for SCI_ALA was 8.400 ± 0.937 compared to 7.050 ± 1.141 for SCI_Veh) and promoting histological recovery after SCI (The results of HE demonstrated that the percentage of damage area in was 44.002 ± 6.680 in the SCI_ALA and 57.215 ± 3.964 in the SCI_Veh at the center of injury.). The sequence data from this study has been deposited into Sequence Read Archive (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE242507). CONCLUSION: Overall, the findings of this study confirmed the beneficial effects of ALA on recovery in SCI rats through transcriptome sequencing, behavioral, as well histology analyses.

11.
Tissue Eng Regen Med ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652220

BACKGROUND: Carbonic anhydrase 1 (CA1) has been found to be involved in osteogenesis and osteoclast in various human diseases, but the molecular mechanisms are not completely understood. In this study, we aim to use siRNA and lentivirus to reduce or increase the expression of CA1 in Dental follicle stem cells (DFSCs), in order to further elucidate the role and mechanism of CA1 in osteogenesis, and provide better osteogenic growth factors and stem cell selection for the application of bone tissue engineering in alveolar bone fracture transplantation. METHODS: The study used RNA interference and lentiviral vectors to manipulate the expression of the CA1 gene in DFSCs during in vitro osteogenic induction. The expression of osteogenic marker genes was evaluated and changes in CA1, alkaline phosphatase (ALP), Runt-related transcription factor 2 (RUNX2), and Bone morphogenetic proteins (BMP2) were measured using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). The osteogenic effect was assessed through Alizarin Red staining. RESULTS: The mRNA and protein expression levels of CA1, ALP, RUNX2, and BMP2 decreased distinctly in the si-CA1 group than other groups (p < 0.05). In the Lentivirus-CA1 (LV-CA1) group, the mRNA and protein expressions of CA1, ALP, RUNX2, and BMP2 were amplified to varying degrees than other groups (p < 0.05). Apart from CA1, BMP2 (43.01%) and ALP (36.69%) showed significant upregulation (p < 0.05). Alizarin red staining indicated that the LV-CA1 group produced more calcified nodules than other groups, with a higher optical density (p < 0.05), and the osteogenic effect was superior. CONCLUSIONS: CA1 can impact osteogenic differentiation via BMP related signaling pathways, positioning itself upstream in osteogenic signaling pathways, and closely linked to osteoblast calcification and ossification processes.

12.
Molecules ; 29(8)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38675707

Wastewater containing organic dyes has become one of the important challenges in water treatment due to its high salt content and resistance to natural degradation. In this work, a novelty adsorbent, PEI-SMA, was prepared by grafting polyethyleneimine (PEI) onto styrene-maleic anhydride copolymer (SMA) through an amidation reaction. The various factors, such as pH, adsorbent dosage, contact time, dye concentration, and temperature, which may affect the adsorption of PEI-SMA for Reactive Black 5 (RB5), were systematically investigated by static adsorption experiments. The adsorption process of PEI-SMA for RB5 was more consistent with the Langmuir isotherm model and the pseudo-second-order model, suggesting a single-layer chemisorption. PEI-SMA exhibits excellent adsorption performance for RB5 dye, with a maximum adsorption capacity of 1749.19 mg g-1 at pH = 2. Additionally, PEI-SMA exhibited highly efficient RB5 competitive adsorption against coexisting Cl- and SO42- ions and cationic dyes. The adsorption mechanism was explored, and it can be explained as the synergistic effect of electrostatic interaction, hydrogen bonding and π-π interaction. This study demonstrates that PEI-SMA could act as a high performance and promising candidate for the effective adsorption of anionic dyes from aqueous solutions.

13.
Exp Neurol ; 377: 114784, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38642665

Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1ß, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.

14.
Medicine (Baltimore) ; 103(17): e37916, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669419

Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors with diverse clinical presentations. Alterations in energy expenditure state are commonly observed in patients with PPGL. However, the reported prevalence of hypermetabolism varies significantly and the underlying mechanisms and implications of this presentation have not been well elucidated. This review discusses and analyzes the factors that contribute to energy consumption. Elevated catecholamine levels in patients can significantly affect substance and energy metabolism. Additionally, changes in the activation of brown adipose tissue (BAT), inflammation, and the inherent energy demands of the tumor can contribute to increased resting energy expenditure (REE) and other energy metabolism indicators. The PPGL biomarker, chromogranin A (CgA), and its fragments also influence energy metabolism. Chronic hypermetabolic states may be detrimental to these patients, with surgical tumor removal remaining the primary therapeutic intervention. The high energy expenditure of PPGL has not received the attention it deserves, and an accurate assessment of energy metabolism is the cornerstone for an adequate understanding and treatment of the disease.


Adrenal Gland Neoplasms , Energy Metabolism , Paraganglioma , Pheochromocytoma , Humans , Energy Metabolism/physiology , Pheochromocytoma/metabolism , Paraganglioma/metabolism , Adrenal Gland Neoplasms/metabolism , Catecholamines/metabolism , Adipose Tissue, Brown/metabolism , Chromogranin A/metabolism
15.
Anal Bioanal Chem ; 416(13): 3195-3203, 2024 May.
Article En | MEDLINE | ID: mdl-38613682

We propose a sensitive H1N1 virus fluorescence biosensor based on ligation-transcription and CRISPR/Cas13a-assisted cascade amplification strategies. Products are generated via the hybridization of single-stranded DNA (ssDNA) probes containing T7 promoter and crRNA templates to a target RNA sequence using SplintR ligase. This generates large crRNA quantities in the presence of T7 RNA polymerase. At such crRNA quantities, ternary Cas13a, crRNA, and activator complexes are successfully constructed and activate Cas13a to enhance fluorescence signal outputs. The biosensor sensitively and specifically monitored H1N1 viral RNA levels down to 3.23 pM and showed good linearity when H1N1 RNA concentrations were 100 pM-1 µM. Biosensor specificity was also excellent. Importantly, our biosensor may be used to detect other viral RNAs by altering the sequences of the two probe junctions, with potential applications for the clinical diagnosis of viruses and other biomedical studies.


Biosensing Techniques , CRISPR-Cas Systems , Influenza A Virus, H1N1 Subtype , RNA, Viral , Biosensing Techniques/methods , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , RNA, Viral/analysis , RNA, Viral/genetics , Nucleic Acid Amplification Techniques/methods , Humans , Limit of Detection , Fluorescence , Transcription, Genetic
16.
Adv Ther ; 41(4): 1698-1710, 2024 Apr.
Article En | MEDLINE | ID: mdl-38443650

INTRODUCTION: Allergen-specific immunotherapy (AIT) plays a pivotal role in altering the immune status and tissue responses in allergic rhinitis (AR). This study focuses on the impact of sublingual immunotherapy (SLIT) involving dust mite drops, exploring the modulation of regulatory T cells (Treg) and their specific marker, BLIMP1, in the nasal mucosa. METHODS: Immune cells were isolated from nasal lavage fluid of patients with AR undergoing SLIT (n = 94). Treg cells were analyzed for BLIMP1 expression, and chemokine levels associated with Treg recruitment were assessed using Luminex assay. Patients were categorized on the basis of SLIT efficacy and followed for changes after discontinuation. RESULTS: SLIT induced a significant increase in nasal Treg cells (7.09 ± 2.59% vs. 0.75 ± 0.27%, P < 0.0001). BLIMP1 expression in Treg cells notably increased after SLIT (0.36 ± 0.22% to 16.86 ± 5.74%, P < 0.0001). Ineffective SLIT cases exhibited lower levels of nasal Treg and Blimp1 + Treg cells (both P < 0.0001). Receiver operating characteristic (ROC) analysis confirmed their potential as efficacy predictors (AUC = 0.908 and 0.968, respectively). SLIT discontinuation led to a significant reduction in Treg and Blimp1 + Treg cells (P < 0.001), emphasizing their maintenance during treatment. Pro-inflammatory cytokines decreased (P < 0.001), while CCL2 associated with Treg recruitment increased (P = 0.0015). CONCLUSION: Elevated nasal Blimp1 + Treg cells serve as a predictive biomarker for SLIT responsiveness in pediatric AR. Their influence on immunotherapy effectiveness contributes to a nuanced understanding of SLIT mechanisms, allowing for disease stratification and personalized treatment plans. This study offers scientific support for predicting SLIT efficacy, enhancing the prospects of improved treatment outcomes in AR.


Rhinitis, Allergic , Sublingual Immunotherapy , Humans , Child , T-Lymphocytes, Regulatory/metabolism , Rhinitis, Allergic/therapy , Treatment Outcome , Cytokines , Allergens
17.
J Control Release ; 368: 768-779, 2024 Apr.
Article En | MEDLINE | ID: mdl-38492861

Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults with a 5-year survival rate of 30.5%. These poor patient outcomes are attributed to tumor relapse, stemming from ineffective innate immune activation, T cell tolerance, and a lack of immunological memory. Thus, new strategies are needed to activate innate and effector immune cells and evoke long-term immunity against AML. One approach to address these issues is through Stimulator of Interferon Genes (STING) pathway activation, which produces Type I Interferons (Type I IFN) critical for innate and adaptive immune activation. Here, we report that systemic immunotherapy with a lipid-based nanoparticle platform (CMP) carrying Mn2+ and STING agonist c-di-AMP (CDA) exhibited robust anti-tumor efficacy in a mouse model of disseminated AML. Moreover, CMP immunotherapy combined with immune checkpoint blockade against cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) elicited robust innate and adaptive immune activation with enhanced cytotoxic potential against AML, leading to extended animal survival after re-challenge with AML. Overall, this CMP combination immunotherapy may be a promising approach against AML and other disseminated cancer.


Antineoplastic Agents , Leukemia, Myeloid, Acute , Nanoparticles , Neoplasms , Mice , Adult , Animals , Humans , Manganese , Leukemia, Myeloid, Acute/drug therapy , T-Lymphocytes , Immunotherapy , Immunity, Innate
18.
J Hazard Mater ; 470: 134166, 2024 May 15.
Article En | MEDLINE | ID: mdl-38554511

UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.


Anti-Bacterial Agents , Peracetic Acid , Ultraviolet Rays , Wastewater , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Peracetic Acid/pharmacology , Tetracycline/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial/drug effects , Water Purification/methods , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/toxicity , Bacteria/drug effects , Bacteria/genetics , Bacteria/radiation effects , Disinfection/methods , Biodegradation, Environmental
19.
J Am Heart Assoc ; 13(6): e031283, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38456416

BACKGROUND: Dilated cardiomyopathy (DCM) is the leading cause of heart failure with a poor prognosis. Recent studies suggest that endothelial to mesenchymal transition (EndMT) may be involved in the pathogenesis and cardiac remodeling during DCM development. EDIL3 (epidermal growth factor-like repeats and discoidin I-like domains 3) is an extracellular matrix glycoprotein that has been reported to promote EndMT in various diseases. However, the roles of EDIL3 in DCM still remain unclear. METHODS AND RESULTS: A mouse model of DCM and human umbilical vein endothelial cells were used to explore the roles and mechanisms of EDIL3 in DCM. The results indicated that EndMT and EDIL3 were activated in DCM mice. EDIL3 deficiency attenuated cardiac dysfunction and remodeling in DCM mice. EDIL3 knockdown alleviated EndMT by inhibiting USP10 (ubiquitin specific peptidase 10) dependent Smad4 deubiquitination in vivo and in vitro. Recombinant human EDIL3 promoted EndMT via reinforcing deubiquitination of Smad4 in human umbilical vein endothelial cells treated with IL-1ß (interleukin 1ß) and TGF-ß (transforming growth factor beta). Inhibiting USP10 abolished EndMT exacerbated by EDIL3. In addition, recombinant EDIL3 also aggravates doxorubicin-induced EndMT by promoting Smad4 deubiquitination in HUVECs. CONCLUSIONS: Taken together, these results indicate that EDIL3 deficiency attenuated EndMT by inhibiting USP10 dependent Smad4 deubiquitination in DCM mice.


Cardiomyopathy, Dilated , Animals , Humans , Mice , Calcium-Binding Proteins/metabolism , Cardiomyopathy, Dilated/metabolism , Cell Adhesion Molecules/metabolism , Discoidins , Epidermal Growth Factor , Epithelial-Mesenchymal Transition , Human Umbilical Vein Endothelial Cells/metabolism , Transforming Growth Factor beta/metabolism , Ubiquitin Thiolesterase , Ubiquitin-Specific Proteases/metabolism
...